Feromagnētiskas nanodaļiņas un to pielietojums mīkstu materiālu (dihidropiridīna tipa lipīdu organiski savienojumi, polimēri) funkcionalizācijai

Loading...
Thumbnail Image

Date

Journal Title

Journal ISSN

Volume Title

Publisher

Latvijas Universitāte

Language

lav

Abstract

Dotajā promocijas darbā ir pētīti optimālie nosacījumi magnētisku liposomu iegūšanai, izmantojot jaunu lipīdveida savienojumu 1,4-dihidropiridīna atvasinājumu 1,1 [3,5-di9dodeciloksikarbonil)-4-fenil-1,4-dihidropiridīn-2,6-diil[dimetilēn-bispiridīnija dibromīdu (KP-11). Tika veiktas ferošķidrumu sintēzes. Iegūtie ferošķidrumi tika tālāk izmantoti nanodaļiņu funkcionalizācijai ar dažādu molmasu dekstrāniem, kā arī magnetoliposomu iegūšanai. Mīkstu meteriālu objekti tika pētīti ar optiskās mikroskopijas, transmisijas elektronmikroskopijas un dinamiskās gaismas izkliedes metodēm. Sintežetie magnētiskie nanomateriāli ļāva novērot un aprakstīt virkni jaunu fizikālu parādību - noteikt magnetoliposomu membrānu, kas veidota no 1,4-DHP atvasinājuma KP-11, mehāniskās īpašības, raksturot magnētiskās mikrokonvekcijas parādību un noteikt to rakstutojošus lielumus, kvantitatīvi aprakstīt lādētu nanodaļiņu termoforēzi.
The research described in the thesis deals with studying of optimal conditions for the production of magnetoliposomes using new lipid-type 1,4-dihydropyridine derivative 1,1’- [3,5-di(dodecyloxycarbonyl)-4-phenyl-1,4-dihydropyridine-2,6-diyl]dimethylene-bispyridinium dibromide (KP-11). Synthesis of ferrofluids has been performed. The produced ferrofluids have been used for nanoparticles’ functionalization with different molecular weights dextrans and also for magnetic liposomes’ preparation. The prepared soft material objects were studied by optical microscopy, transmission electron microscopy and dynamic light scattering technique. The synthesized magnetic nanomaterials made it possible to observe and describe a number of new physical phenomena: to determine mechanical properties of the membrane formed by the 1,4-DHP derivative KP-11, to describe magnetic microconvection phenomena and determine their characteristic parameters, to describe quantitatively the thermodiffusion (thermophoresis) motion of electrically charged nanoparticles.

Citation

Relation

Endorsement

Review

Supplemented By

Referenced By