Biofilmas un metallo-β-laktamāzes producēšanas noteikšana Pseudomonas aeruginosa un Acinetobacter baumannii baktēriju almos
Loading...
Date
Authors
Advisor
Journal Title
Journal ISSN
Volume Title
Publisher
Latvijas Universitāte
Language
lav
Abstract
Pseudomonas aeruginosa un Acinetobacter baumannii metallo-β-laktamāžu producēšana ir kļuvusi par pieaugošu terapeitisko problēmu visā pasaulē, kā arī antibiotiku rezistentiem celmiem ir spēja veidot noturīgākas biofilmas, kas rada problēmas šo patogēnu izraisīto infekciju ārstēšanā. Darba mērķis: noteikt Pseudomonas aeruginosa un Acinetobacter baumannii spēju veidot biofilmas, producēt metallo- β-laktamāzes, kā arī statistiski apkopot datus par jutību pret antibakteriālajiem līdzekļiem starp 2017. gadu un 2019. gadu, un veikt rezistences izmaiņas salīdzinājumu. Uzdevumi: identificēt no elpceļiem iegūtos izolātus ar BBL™ Crystal™ sistēmu, kā arī ar GenoType® BC gramnegative testu, veikt antibakteriālo līdzekļu jutības testus un noteikt metallo- β-laktamāžu producēšanu, izmantojot Bauer – Kirby disku difūzijas testu, E – testu, apkopot fenotipus pēc antibiogrammām, veikt statistisko analīzi izmantojot MS Excel 2016. Rezultāti: 2019. gadā P. aeruginosa izolātiem (n=75) pret ciprofloksacīnu noteikta vislielākā rezistence - 17,33% (n=13). 2019. gadā A. baumannii izolātiem (n=20) vislielākā rezistence noteikta pret ceftazidīmu - 55% (n=11). Salīdzinot 2017. gadu ar 2019. gadu, A. baumannii rezistences palielināšanas visbiežāk tika noteikta pret karbapenēmiem – imipenēmu un meropenēmu, kas ir attiecīgi 8,78% un 11,67%, kas liecina par metallo-β-laktamāžu producēšanu. P. aeruginosa novērota rezistences palielināšanās pret ciprofloksacīnu, kas ir 6,56%. 2019. gadā P. aeruginosa kombinētā rezistence tika konstatēta 9,33 % gadījumā (n=6). 2019. gadā A. baumannii kombinētā rezistence tika konstatēta 45% gadījumā (n=9). No 15 P. aeruginosa izolātiem 9 veido biofilmas, kas ir 60%, un no 12 A. baumannii izolātiem 8 veidoja biofilmas, kas ir 66,67%. Bioplēves veidošanās pozitīvi korelēja ar MBL producēšanu.
The production of metallo-β lactamases by Pseudomonas aeruginosa and Acinetobacter baumannii has become a growing therapeutic problem worldwide, and antibiotic-resistant strains have the ability to produce more stable biofilms, which poses problems in the treatment of infections caused by these pathogens. Aim of the study: to determine the ability of P. aeruginosa and A. baumannii to form biofilms, to produce metallo-β-lactamases, as well as to statistically collect data on antibacterial susceptibility between 2017 and 2019, and to compare the change in resistance. Tasks: to identify airway isolates with BBL ™ Crystal ™ system, as well as with GenoType® BC gramnegative test, to perform antibacterial susceptibility tests and to determine metallo- β-lactamase production using Bauer – Kirby disc diffusion test, E™ -test, to summarize phenotypes according to antibiograms, to perform statistical analysis using MS Excel 2016. Results: In 2019, P. aeruginosa isolates (n = 75) had the highest resistance to ciprofloxacin - 17.33% (n = 13). In 2019, A. baumannii isolates (n = 20) had the highest resistance to ceftazidime - 55% (n = 11). Comparing 2017 with 2019, increases in A. baumannii resistance were most commonly detected against carbapenems - imipenem and meropenem, which are 8.78% and 11.67% respectively, indicating production of metallo-β-lactamases. An increase in resistance to ciprofloxacin of 6.56% was observed in P. aeruginosa. In 2019, combined resistance of P. aeruginosa was observed at 9.33% (n = 6). In 2019, the combined resistance of A. baumannii was observed at 45% (n = 9). Of the 15 P. aeruginosa isolates, 9 formed ( 60% ) biofilms and 8 (66.67% ) of the 12 A. baumannii isolates formed biofilms. Biofilm formation positively correlated with MBL production.
The production of metallo-β lactamases by Pseudomonas aeruginosa and Acinetobacter baumannii has become a growing therapeutic problem worldwide, and antibiotic-resistant strains have the ability to produce more stable biofilms, which poses problems in the treatment of infections caused by these pathogens. Aim of the study: to determine the ability of P. aeruginosa and A. baumannii to form biofilms, to produce metallo-β-lactamases, as well as to statistically collect data on antibacterial susceptibility between 2017 and 2019, and to compare the change in resistance. Tasks: to identify airway isolates with BBL ™ Crystal ™ system, as well as with GenoType® BC gramnegative test, to perform antibacterial susceptibility tests and to determine metallo- β-lactamase production using Bauer – Kirby disc diffusion test, E™ -test, to summarize phenotypes according to antibiograms, to perform statistical analysis using MS Excel 2016. Results: In 2019, P. aeruginosa isolates (n = 75) had the highest resistance to ciprofloxacin - 17.33% (n = 13). In 2019, A. baumannii isolates (n = 20) had the highest resistance to ceftazidime - 55% (n = 11). Comparing 2017 with 2019, increases in A. baumannii resistance were most commonly detected against carbapenems - imipenem and meropenem, which are 8.78% and 11.67% respectively, indicating production of metallo-β-lactamases. An increase in resistance to ciprofloxacin of 6.56% was observed in P. aeruginosa. In 2019, combined resistance of P. aeruginosa was observed at 9.33% (n = 6). In 2019, the combined resistance of A. baumannii was observed at 45% (n = 9). Of the 15 P. aeruginosa isolates, 9 formed ( 60% ) biofilms and 8 (66.67% ) of the 12 A. baumannii isolates formed biofilms. Biofilm formation positively correlated with MBL production.