Optimization of the enzyme power source for a nano drug delivery system fuelled by glucose in blood plasma

Loading...
Thumbnail Image

Date

Co-author

Advisor

Journal Title

Journal ISSN

Volume Title

Publisher

Institute of Physics Publishing

Language

eng

Abstract

A unique in vivo electrical pulse generator to improve membrane permeability for drugs and simultaneously facilitate self-powered nano devices for nano drug delivery systems (NDDS) was identified. The use of an unsupported biological catalyst component of the power supply was aimed at the NDDS instead of a conventional membrane electrode assembly (MEA). Self-powered carriers of drugs and prodrugs with improved controlled release capability to target areas using substrate available in biological matrices such as glucose in blood is envisaged. The experimental application implemented prototype designed chambers allowing the entry of premixed precursors and low ohm resistance due the absence of diffusion layers and optimised open circuit voltage (OCV). This would also minimise poisoning and rupturing of the proton exchange membrane (PEM). The model uses the isothermal experimental design (37°C) parameter and the glucose is partly oxidised prior to entry and mostly oxidised at the surface of the proton exchange membrane (PEM). The experimental model used a residence time instead of the usual flow rate. The power was notably high for short periods due to the absence of carbon supported diffusion layers. The findings included low levels of glucose and glucose oxidase (GOx) are needed for OCV optimisation.

Citation

Relation

info:eu-repo/grantAgreement/EC/H2020/739508/EU/Centre of Advanced Material Research and Technology Transfer/CAMART²

Endorsement

Review

Supplemented By

Referenced By