Saspiedējattēlojuma principa lietojumi otrās kārtas nelokālās robežproblēmas atrisinājuma eksistences un unitātes pētīšana
Loading...
Date
Authors
Advisor
Journal Title
Journal ISSN
Volume Title
Publisher
Latvijas Universitāte
Language
lav
Abstract
Šajā darbā tiek aplūkota otrās kārtas nelineāra robežproblēma ar integrālo robežnosacījumu, lai iegūtu rezultātus par robežproblēmas atrisinājuma eksistenci un unitāti. Sākumā robežproblēma tika pārrakstīta par integrālvienādojumu, konstruējot robežproblēmas Grīna funkciju un pēc tam tika izmantots saspiedējattēlojuma princips jeb Banaha nekustīgā punkta teorēma, kā arī Rasa nekustīgā punkta teorēma.
In this work, a second-order nonlinear boundary value problem with an ingeral boundary condition is considered to obtain results on the existence and uniquiness of a solution to the boundary value problem. At first, the boundary value problem was rewritten as an integral equation by constructing the Green's function of the boundary value problem, and then the contraction mapping principle or Banach's fixed point and Rus's fixed point theorem were used.
In this work, a second-order nonlinear boundary value problem with an ingeral boundary condition is considered to obtain results on the existence and uniquiness of a solution to the boundary value problem. At first, the boundary value problem was rewritten as an integral equation by constructing the Green's function of the boundary value problem, and then the contraction mapping principle or Banach's fixed point and Rus's fixed point theorem were used.