Mākslīgā intelekta meklētājprogrammas akadēmiskās informācijas meklēšanai
Loading...
Date
Authors
Advisor
Journal Title
Journal ISSN
Volume Title
Publisher
Latvijas Universitāte
Language
lav
Abstract
Bakalaura darba “Mākslīgā intelekta meklētājprogrammas akadēmiskās informācijas meklēšanai” mērķis bija izvērtēt mākslīgā intelekta meklētājprogrammu lietojamību, derīgumu un atbilstību akadēmiskās informācijas meklēšanā. Pētījuma teorētiskā bāze sastāvēja no Mijiedarbības trīs komponentu modeļa, Nielsena 10 heiristikām, Tefko Saraceviča Atbilstības teorijas. Mērķa sasniegšanai tika izmantotas piecas pētniecības metode, no kurām svarīgākās bija dokumentu analīze, gadījuma analīze, verbālais protokols un aptauja. Pētījumā tika secināts, ka mākslīgā intelekta meklētājprogrammas ir derīgas akadēmiskās informāciju izguvē, tām ir gandrīz laba lietojamība un jaunākajai analizētajai mākslīgā intelekta meklētājprogrammai Consensus ir ļoti atbilstoši rezultāti.
The aim of the bachelor's thesis “Artificial intelligence search engines for academic information retrieval” was to evaluate the usability, usefulness and relevance of artificial intelligence search engines in academic information retrieval. The theoretical basis of the study consisted of the Interaction Triptych Framework, Nielsen's 10 Heuristics, Tefko Saracevic’s Relevance Theory. Five research methods were used to achieve the goal, the most important of which were document analysis, case analysis, verbal protocol and survey. The study concluded that artificial intelligence search engines are valid for academic information retrieval, they have rather good usability and the newest analyzed artificial intelligence search engine Consensus has very relevant results.
The aim of the bachelor's thesis “Artificial intelligence search engines for academic information retrieval” was to evaluate the usability, usefulness and relevance of artificial intelligence search engines in academic information retrieval. The theoretical basis of the study consisted of the Interaction Triptych Framework, Nielsen's 10 Heuristics, Tefko Saracevic’s Relevance Theory. Five research methods were used to achieve the goal, the most important of which were document analysis, case analysis, verbal protocol and survey. The study concluded that artificial intelligence search engines are valid for academic information retrieval, they have rather good usability and the newest analyzed artificial intelligence search engine Consensus has very relevant results.