Krāpniecības signālu identificēšana, izmantojot Beijesa tīklus

Loading...
Thumbnail Image

Date

Journal Title

Journal ISSN

Volume Title

Publisher

Latvijas Universitāte

Language

lav

Abstract

Darbā ir apskatīta Beijesa tīklu pielietojamība krāpniecības signālu identificēšanai, izmantojot klasificēšanas metodi. Aprakstīti Beijesu tīklu strukturēšanas un uzskatu atjaunošanas principi. Izpētīti mainīgo lielumu varbūtību sadalījumu parametru novērtētāji. Apskatīti Beijesa tīklu veidi. Izstrādāti Beijesa tīklu modeļi krāpniecības identificēšanai un iegūtie rezultāti salīdzināti ar citiem mašīnmācīšanās algoritmiem.
The work examines the applicability of Bayesian Networks for fraud identification using a classification approach. It describes the principles of Bayesian network structuring and belief up dating. The study examines parameter estimators for the probability distributions of random variables. Various types of Bayesian Networks have been reviewed. Finally, Bayesian Network models for fraud detection have been developed, and the results obtained have been compared with those of other machine learning algorithms.

Citation

Relation

Endorsement

Review

Supplemented By

Referenced By