Līdzsvars populāciju ģenētikas matemātiskajos modeļos
Loading...
Date
Authors
Advisor
Journal Title
Journal ISSN
Volume Title
Publisher
Latvijas Universitāte
Language
lav
Abstract
Darbā tika apskatīti populāciju ģenētikas matemātiskie modeļi, kurus apraksta ar diferenču vienādojumiem. Tika apkopoti nepieciešamie pamatjēdzieni par diferenču vienādojumiem un populāciju ģenētiku. Analizēts Hārdija-Veinberga modeļa līdzsvars un tā stabilitāte, kā arī izpētīta līdzsvara stabilitāte Fišera modelī ar dabisko atlasi. Tika veiktas skaitliskas simulācijas Fišera modelī, pieņemot dažādas parametru vērtības.
The work examined the mathematical models of population genetics described by difference equations. The necessary basic concepts of difference equations and population genetics were summarized. The equilibrium of the Hardy-Weinberg model and its stability were analyzed, as well as the stability of the equilibrium in the Fisher model with natural selection. Numerical simulations were performed in the Fisher model, assuming different parameter values.
The work examined the mathematical models of population genetics described by difference equations. The necessary basic concepts of difference equations and population genetics were summarized. The equilibrium of the Hardy-Weinberg model and its stability were analyzed, as well as the stability of the equilibrium in the Fisher model with natural selection. Numerical simulations were performed in the Fisher model, assuming different parameter values.