Ezeru ekosistēmu maiņas punktu kvalitatīva analīze un modelēšana ar stohaistiskajiem diferenciālvienādojumiem
Loading...
Date
Authors
Advisor
Journal Title
Journal ISSN
Volume Title
Publisher
Latvijas Universitāte
Language
lav
Abstract
Ezeru eitrofikācija, kas ir ūdens augu pastiprināta vairošanās palielinātu uzturvielu (fosfora un slāpekļa) koncentrāciju dēļ, ir viena no svarīgākajām mūsdienu problēmām ūdens krātuvju ap- saimniekošanā. Zināms, ka galvenais eitrofikācijas iemesls ir palielināts fosfora daudzums ūde- nī, turklāt ir zināms ka fosfora uzvedībā ir novērojama maiņas punktu dinamika. Šo uzvedību klasiski apraksta ar parastajiem diferenciālvienādojumiem, bet pievienojot tiem troksni varam pētīt dinamiku kuru ar parastajiem diferenciālvienādojumiem nevar aprakstīt. Darba mērķis ir izpētīt ezeru fosfora stohastisko diferenciālvienādojumu modeli un veikt secinājumus par fos- fora dinamiku balstoties uz modeļa uzvedību, it īpaši ap maiņas punktiem.
Lake eutrophication, which is an increase in the growth of plants in water ecosystems caused by excess nutrients (phosphorus and nitrogen) is one of the main modern-day problems regarding water system management. It is known that the main driver of eutrophication is an increased phosphorus load in the water, and it is also known that phosphorus concentrations exhibit change point dynamics. This behaviour is typically described by ordinary differential equations, howe- ver, adding noise to these equations we may research dynamics that would be impossible for ordinary differential equations to describe. The goal of this work is to analyze a lake phospho- rus stochastic differential equation model and draw conclusions about phosphorus dynamics based on the model’s behaviour, especially around change points.
Lake eutrophication, which is an increase in the growth of plants in water ecosystems caused by excess nutrients (phosphorus and nitrogen) is one of the main modern-day problems regarding water system management. It is known that the main driver of eutrophication is an increased phosphorus load in the water, and it is also known that phosphorus concentrations exhibit change point dynamics. This behaviour is typically described by ordinary differential equations, howe- ver, adding noise to these equations we may research dynamics that would be impossible for ordinary differential equations to describe. The goal of this work is to analyze a lake phospho- rus stochastic differential equation model and draw conclusions about phosphorus dynamics based on the model’s behaviour, especially around change points.