Audu spektroskopiskās variācijas radiofrekvences enerģijas ietekmē
Loading...
Date
Authors
Advisor
Journal Title
Journal ISSN
Volume Title
Publisher
Latvijas Universitāte
Language
N/A
Abstract
Problēmas, ar kurām saskaras radiofrekvences ķirurģijā, ir grūtības nodrošināt vizuālu kontroli ķirurģisko manipulāciju laikā intersticiālos audos un iekšējos orgānos, kā arī pielietotās enerģijas ierobežošana. Lai nodrošinātu labāku kontroli un plānoto efektu, ir nepieciešams piemeklēt objektīvu metodi un kritērijus, lai varētu novērtēt radioviļņu efektus audos, tādejādi nodrošinot veiksmīgu un paredzamu ķirurģisko manipulāciju.
Darba mērķis ir izvērtēt vai gaismu vadošais elektrods spēj sniegt informāciju par gaidāmajām izmaiņām audos pie ilgstošas praktiskas iedarbības ar radiofrekvenču ķirurģijas iekārtu.
Pētījuma objekts: cūkas audi: nieres, sirds, ādas, gliemežnīcas, mīksto aukslēju un vaiga gļotādas audi, kā arī olas baltums. Gaismas absorbcijas mērījumi tika iegūti, izmantojot gaismas vadošas optiskās šķiedras, kuras savienotas ar STS UV spektrometru. Absorbcijas mērījumi tika fiksēti izmantojot OceanView 1.4.1 datorprogrammu. Uz iepriekš minētajiem audiem tika pielietota 4 MHz frekvence, kuru ģenerē Surton Flash 160 ķirurģijas iekārta. Griezieni audos tika veikti pie dažādiem jaudas līmeņiem un dažāda iedarbības ilguma.
Rezultāti. Eksperimenta laikā tika pierādīts, ka katram izpētes objektam gaismas absorbcijas mērījumi ir atšķirīgi. Visaugstākās absorbcijas attiecības vērtības tika noteiktas ādā, kur absorbcijas vērtības audos pieauga par 0,67 OD pie viļņa garuma (λ) 625 nm, par 0,6 OD pie λ = 650 nm, un par 0,59 OD pie λ = 665 nm (7,8 sekunžu iedarbības ar jaudu 40 W). Vismazākais absorbcijas attiecības vērtības pieaugums tika novēros gliemežnīcas un nieres audos. Nierēs 3,3 sekundēs absorbcijas vērtība (pie 25 W) pieauga par 0,31 OD pie λ = 625 nm, par 0,24 OD pie λ = 650 nm un par 0,27 OD pie λ = 665 nm. Savukārt, gliemežnīcas audos absorbcijas vērtības pieaugums par 0,3 OD pie λ = 625 nm, par 0,29 OD pie λ = 650 nm un par 0,24 OD pie λ = 665 nm tika novērots 9,8 sekundēs pie 10 W.
Secinājumi. Svarīgi nodrošināt stabilu elektrodu izvietojumu. Katram audu tipam ir atšķirība absorbcija. Nepieciešams pielietot dažādu jaudu un enerģijas iedarbības ilgumu, lai sasniegtu augstāko absorbcijas attiecības vērtību. Audiem ar augstāku šķidruma saturu audos ir zemākas optiskās absorbcijas vērtības. Nepieciešams veikt simulāciju, kuras laikā, pielietojot radiofrekvences enerģiju, tiek noteikta audu temperatūra, pretestība un absorbcijas mērījums vai kāds cits optiskās izmaiņas parametrs. Turpmākai izmeklēšanai piemērotāks ir STS VIS spektrometrs, jo tā uztveres diapazons ir atbilstošāks šāda veida pētījumam.
Problems in the radiofrequency surgery are difficulty in providing a visual control during surgery in interstitial tissues and internal organs, as well as energy limitation. In order to ensure control and planned effect it is necessary to choose the method to evaluate the effects of radio waves in the tissues and thus ensuring a successful surgical manipulation. Aim is to assess whether the light leading electrode is able to provide information on the expected changes in the tissues of intensive practical exposure to radiofrequency surgery. In study were used the following pig tissues: kidney, heart, skin, conch shell, the soft palate and buccal mucosa tissue and the egg white. Absorption measurements were obtained using a light-conducting fiber, associated with STS UV spectrometer. Absorption measurements were recorded using OceanView 1.4.1 program. 4 MHz frequency (generated by 160 Flash Surton) was used. Cuts were made with different power and the duration. Results. During the experiment it was shown that each research subject absorption measurements are different. The highest absorption relationship values were determined in the skin where tissue absorption values increased by 0.67 OD at λ = 625 nm of 0.6 OD at λ = 650 nm and about 0.59 OD at λ = 665 nm (7.8 seconds of exposure a power of 40 W). The lowest absorption relationship value increases were observed in turbinate and kidney tissues. Kidney absorption value of 3.3 seconds (at 25 W) increased by 0.31 OD at λ = 625 nm of 0.24 OD at λ = 650 nm and about 0.27 OD at λ = 665 nm. Kidney absorption value (in 3.3 seconds) (at 25 W) increased by 0.31 OD at λ = 625 nm of 0.24 OD at λ = 650 nm and about 0.27 OD at λ = 665 nm. In turn, turbinate tissue absorption increments of 0.3 OD at λ = 625 nm by 0.29 OD at λ = 650 nm and about 0.24 OD at λ = 665 nm. It was observed in 9.8 seconds at 10 W. Conclusions. It is important to provide a stable electrode placement. Each tissue type has difference absorption. It is necessary to use different power and duration of exposure energy to achieve the highest absorption value relationship. Tissues with higher liquid content in tissues have lower absorption properties. It is necessary to make simulation in which tissue temperature, resistance and absorption measurement or another optical parameter changes are determined while using radiofrequency energy. For further investigation should be used STS VIS spectrometer because it`s perception range is more appropriate for this type of study.
Problems in the radiofrequency surgery are difficulty in providing a visual control during surgery in interstitial tissues and internal organs, as well as energy limitation. In order to ensure control and planned effect it is necessary to choose the method to evaluate the effects of radio waves in the tissues and thus ensuring a successful surgical manipulation. Aim is to assess whether the light leading electrode is able to provide information on the expected changes in the tissues of intensive practical exposure to radiofrequency surgery. In study were used the following pig tissues: kidney, heart, skin, conch shell, the soft palate and buccal mucosa tissue and the egg white. Absorption measurements were obtained using a light-conducting fiber, associated with STS UV spectrometer. Absorption measurements were recorded using OceanView 1.4.1 program. 4 MHz frequency (generated by 160 Flash Surton) was used. Cuts were made with different power and the duration. Results. During the experiment it was shown that each research subject absorption measurements are different. The highest absorption relationship values were determined in the skin where tissue absorption values increased by 0.67 OD at λ = 625 nm of 0.6 OD at λ = 650 nm and about 0.59 OD at λ = 665 nm (7.8 seconds of exposure a power of 40 W). The lowest absorption relationship value increases were observed in turbinate and kidney tissues. Kidney absorption value of 3.3 seconds (at 25 W) increased by 0.31 OD at λ = 625 nm of 0.24 OD at λ = 650 nm and about 0.27 OD at λ = 665 nm. Kidney absorption value (in 3.3 seconds) (at 25 W) increased by 0.31 OD at λ = 625 nm of 0.24 OD at λ = 650 nm and about 0.27 OD at λ = 665 nm. In turn, turbinate tissue absorption increments of 0.3 OD at λ = 625 nm by 0.29 OD at λ = 650 nm and about 0.24 OD at λ = 665 nm. It was observed in 9.8 seconds at 10 W. Conclusions. It is important to provide a stable electrode placement. Each tissue type has difference absorption. It is necessary to use different power and duration of exposure energy to achieve the highest absorption value relationship. Tissues with higher liquid content in tissues have lower absorption properties. It is necessary to make simulation in which tissue temperature, resistance and absorption measurement or another optical parameter changes are determined while using radiofrequency energy. For further investigation should be used STS VIS spectrometer because it`s perception range is more appropriate for this type of study.