Ēterisko eļļu enkapsulēšana, izmantojot elektrovērpšanas metodi
Loading...
Date
Authors
Advisor
Journal Title
Journal ISSN
Volume Title
Publisher
Latvijas Universitāte
Language
lav
Abstract
Darba mērķis ir izstrādāt polimēru šķiedras ar iekapsulētu ēterisko eļļu biomedicīnas vajadzībām, izmantojot elektrovērpšanas metodi. Par aktīvo vielu izvēlēts geraniols, kas ir monoterpēnu spirts ar izteiktām antibakteriālām un pretiekaisuma īpašībām. Kā polimēra matrica izmantots zeīns – hidrofobs augu izcelsmes proteīns, kas spēj veidot stabilas šķiedras un ir bioloģiski noārdāms. Elektrovērpšanas ceļā tika iegūtas nanošķiedras, kuras raksturoti ar skenējošo elektronu mikroskopiju (SEM), lai noteiktu šķiedru morfoloģiju, rentgenstaru difrakciju (XRD) kristāliskuma analīzei, kā arī ar FTIR un RAMAN spektroskopiju, lai identificētu ķīmiskās saites un apstiprinātu aktīvās vielas klātbūtni.
The aim of this study is to develop polymer fibers containing encapsulated essential oil for biomedical applications using the electrospinning method. Geraniol, a monoterpenoid alcohol with well-documented antibacterial and anti-inflammatory properties, was selected as the active substance. As the polymer matrix, zein—a hydrophobic, plant-derived protein capable of forming stable fibers and known for its biodegradability—was used. Through electrospinning, nanofibers were obtained and subsequently characterized using scanning electron microscopy (SEM) to determine fiber morphology, X-ray diffraction (XRD) to analyze crystallinity, and FTIR and RAMAN spectroscopy to identify chemical bonds and confirm the presence of the active compound.
The aim of this study is to develop polymer fibers containing encapsulated essential oil for biomedical applications using the electrospinning method. Geraniol, a monoterpenoid alcohol with well-documented antibacterial and anti-inflammatory properties, was selected as the active substance. As the polymer matrix, zein—a hydrophobic, plant-derived protein capable of forming stable fibers and known for its biodegradability—was used. Through electrospinning, nanofibers were obtained and subsequently characterized using scanning electron microscopy (SEM) to determine fiber morphology, X-ray diffraction (XRD) to analyze crystallinity, and FTIR and RAMAN spectroscopy to identify chemical bonds and confirm the presence of the active compound.