Kritisko parādību dinamika saistītā Hamiltona un stohastiskā modelī
Loading...
Date
Authors
Advisor
Journal Title
Journal ISSN
Volume Title
Publisher
Latvijas Universitāte
Language
N/A
Abstract
Mezoskopiska mēroga struktūru dinamikas aprakstam segnetoelektriķos izmantots konvencionālās kritisko parādību teorijas paplašinājums. Tā konceptuālais pamats ir sistēmas – rezervuāra modelis, kurš formāli aprakstās ar Landaua – tipa modeļa Hamiltoniānu un aditīvām termiskām fluktuācijām. Matemātiskā problēma ir attiecīgā Fokera-Planka vienādojuma atrisināšana. Iegūtais rezultāts ir segnetoelektrisku domēnu dzimšana, augšana un pārslēgšanās dinamika mainīga elektriskā lauka un temperatūras ietekmē.
Atslēgvārdi: segnetoelektriski domēni, Hamiltona un stohastiska dinamika
Conventional approach to critical phenomena is extended toward the dynamics of mesoscopic scale structures in ferroelectrics. The conceptual basis is system – bath approach formally described by Landau type regular part and stochastic part represented by thermal fluctuations. The mathematical technique is focused on solutions of relevant Fokker – Planck relation. Results are addressed to nucleation, sideway growth and switching of ferroelectric domains under the impact of driving field and temperature. Keywords: ferroelectric domains, Hamiltonian and stochastic dynamics
Conventional approach to critical phenomena is extended toward the dynamics of mesoscopic scale structures in ferroelectrics. The conceptual basis is system – bath approach formally described by Landau type regular part and stochastic part represented by thermal fluctuations. The mathematical technique is focused on solutions of relevant Fokker – Planck relation. Results are addressed to nucleation, sideway growth and switching of ferroelectric domains under the impact of driving field and temperature. Keywords: ferroelectric domains, Hamiltonian and stochastic dynamics