SMOOTH INFINITESIMAL ANALYSIS BASED MODEL OF MULTIDIMENSIONAL GEOMETRY

dc.creatorEgoyan, Alexander
dc.date.accessioned2013-09-02T03:36:23Z
dc.date.accessioned2025-07-19T21:15:25Z
dc.date.available2013-09-02T03:36:23Z
dc.date.issued2013-09-02
dc.descriptionIn this work a new approach to multidimensional geometry based on smooth infinitesimal analysis (SIA) is proposed. An embedded surface in this multidimensional geometry will look different for the external and internal observers: from the outside it will look like a composition of infinitesimal segments, while from the inside like a set of points equipped by a metric. The geometry is elastic. Embedded surfaces possess dual metric: internal and external. They can change their form in the bulk without changing the internal metric.
dc.formatapplication/pdf
dc.identifierhttp://scireprints.lu.lv/240/1/1111.0092v1.pdf
dc.identifierEgoyan, Alexander SMOOTH INFINITESIMAL ANALYSIS BASED MODEL OF MULTIDIMENSIONAL GEOMETRY. General Science Journal . ISSN 1916-5382
dc.identifier.urihttps://dspace.lu.lv/handle/7/1836
dc.language.isolaven_US
dc.relationhttp://gsjournal.net/
dc.relationhttp://scireprints.lu.lv/240/
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectQC00 Physics (General)
dc.titleSMOOTH INFINITESIMAL ANALYSIS BASED MODEL OF MULTIDIMENSIONAL GEOMETRY
dc.typeArticle
dc.typePeerReviewed

Files