Jaunas sakarības starp Būla funkciju jutīgumu un bloku jutīgumu
Loading...
Date
Authors
Advisor
Journal Title
Journal ISSN
Volume Title
Publisher
Latvijas Universitāte
Language
N/A
Abstract
Darbā tiek pētīta neatrisināta problēma skaitļošanas sarežģītības teorijā – Būla funkciju jutīguma s(f) saistība ar tādiem sarežģītības mēriem kā bloku jutīgums bs(f) un sertifikātu sarežģītība C(f). Populāra hipotēze apgalvo, ka jutīgums ir polinomiāli saistīts ar bloku jutīgumu un bs(f) = O(s(f)^c) kādai konstantei c. Līdz šim labākais zināmais novērtējums no augšas abiem mēriem ir eksponenciāls, bs(f) ≤ C(f) ≤ 2^(s(f)-1) s(f) - s(f) + 1, bet labākie atrastie piemēri sasniedz tikai kvadrātisku atstarpi, bs(f) = Ω(s(f)^2). Šajā darbā tiek pierādīts jauns novērtējums no augšas, bs(f) ≤ C(f) ≤ max(2^(s(f)-1) (s(f) - 1/3), s(f)).
We examine a longstanding problem in computational complexity theory – the relation between the sensitivity of Boolean functions and such complexity measures as block sensitivity bs(f) and certificate complexity C(f). The famous sensitivity conjecture claims that sensitivity is polynomially related to block sensitivity and bs(f) = O(s(f)^c) for some constant c. The best known yet upper bound is exponential, bs(f) ≤ C(f) ≤ 2^(s(f) - 1) s(f) - s(f) + 1, though the largest separation achieved between the two is quadratic, bs(f) = Ω(s(f)^2). In this work a new upper bound is proved, bs(f) ≤ C(f) ≤ max(2^(s(f)-1) (s(f) - 1/3), s(f)).
We examine a longstanding problem in computational complexity theory – the relation between the sensitivity of Boolean functions and such complexity measures as block sensitivity bs(f) and certificate complexity C(f). The famous sensitivity conjecture claims that sensitivity is polynomially related to block sensitivity and bs(f) = O(s(f)^c) for some constant c. The best known yet upper bound is exponential, bs(f) ≤ C(f) ≤ 2^(s(f) - 1) s(f) - s(f) + 1, though the largest separation achieved between the two is quadratic, bs(f) = Ω(s(f)^2). In this work a new upper bound is proved, bs(f) ≤ C(f) ≤ max(2^(s(f)-1) (s(f) - 1/3), s(f)).