Difūzijas procesu parametru novērtēšanas metodes

Loading...
Thumbnail Image

Date

Journal Title

Journal ISSN

Volume Title

Publisher

Latvijas Universitāte

Language

lav

Abstract

Maģistra darbā tika aplūkotas divas difūzijas procesu parametru novērtēšanas metodes maksimālās ticamības funkcijas metode un empīriskās ticamības funkcijas metode. Darbā ir aprakstīti difūzijas procesi, stohastiskie diferenciālvienādojumi, Ornšteina-Ulenbeka process, Vasičeka modelis, Koksa-Ingersolla-Rossa modelis. Darba mērķis ir novērtēt Vasičeka modeļa parametrus, izmantojot maksimālās ticamības funkcijas novērtējumu un empīriskās ticamības funkcijas novērtējumu un salīdzināt rezultātus. Vasičeka modelis tika pielietots reāliem datiem un aprēķināti modeļa parametri ar parametrisko un neparametrisko metodi.
The master’s thesis describes and compares two methods of parameter estimation for diffusion processes: maximum likelihood estimation and empirical likelihood estimation. The thesis describes diffusion processes, stochastic differential equations, Ornstein-Ulenbeck process, Vasicek model and Cox-Ingersoll-Ross model. The aim of the thesis is to compare the parameters of Vasicek model using the maximum likelihood function and empirical likelihood funkction. The Vasicek model was applied to real data and then model parameters were estimated using parametric and nonparametric methods.

Citation

Relation

Endorsement

Review

Supplemented By

Referenced By