Luminiscences procesi dažādi strukturētos bora nitrīda materiālos
Loading...
Date
Authors
Advisor
Journal Title
Journal ISSN
Volume Title
Publisher
Latvijas Universitāte
Language
N/A
Abstract
LUMINISCENCES PROCESI DAŽĀDI STRUKTURĒTOS
BORA NITRĪDA MATERIĀLOS
Anotācija
Darbs ir veltīts heksagonālā bora nitrīda makromateriāla - polikristālisku graudu
pulvera (hBN) un nanomateriāla – daudzsieniņu nanocauruļu (BNNTs) spektrālo
īpašību izpētei. Darbā tika konstatēts, ka visos pētītajos materiālos defektu radītos
fotoluminiscences (PL) spektrus veido vienas un tās pašas joslas, no kurām
intensīvākās atrodas pie 320 nm un 400 nm. Tas ļauj secināt, ka vieni un tie paši
dabīgie defekti rodas BN kristāliskā režģī jau sintēzes procesā. Tie ir raksturīgi gan
makromateriālam, gan arī nanomateriālam un tos neietekmē materiāla izmērs. Tika
atrasts, ka 320 nm un 400 nm luminiscences un tās ierosmes joslām ir novērojama
sīkstruktūra. Veiktie IR absorbcijas pētījumi parādīja, ka šo sīkstruktūru rada optiskie
fononi (LO un TO). Tika novērots, ka minētās luminiscences joslas ierosina arī
pamatvielas eksitoni un notiek eksitonu enerģijas atdeve defektiem, tos ierosinot un
izraisot luminiscenci. Veiktie spektrālie pētījumi ļauj noteikt luminiscences
mehānismu 320 nm un 400 nm joslām hBN un BNNTs. Galveno 320 nm
luminiscences daļu veido iekšcentra procesi, kur gaismas absorbcija un emisija notiek
vienā un tai pašā piemaisījuma atomā. Galveno 400 nm luminiscences daļu veido
rekombinācijas procesi. hBN un BNNTs novērotā 400 nm luminiscences intensitātes
atkarība no skābekļa daudzuma apkārtējā vidē un konstatētā mērījumu atkārtojamība
ļauj šo materiālu piedāvāt izmantošanai skābekļa sensoros.
LUMINESCENCE PROCESSES IN DIFFERENT STRUCTURED BORON NITRIDE MATERIALS Abstract This work is devoted to studies of spectral properties of hexagonal boron nitride macro material– polycrystalline grain powder (hBN) and nano material – multiwall nanotubes (BNNTs). In the work it was found that in all studied materials photoluminescence spectra contain the same bands, the most intensive bands are located at 320 nm and 400 nm. It allows concluding that identical natural defects are generated in BN crystal lattice during synthesis process. They are characteristic both to macro and nano material and they are not affected by the size scale. It was found that 320 n and 400 nm bands and their excitation bands have fine structure. The fulfilled IR absorption studies have shown that the fine structure is caused by optical phonons (LO and TO). It was observed that the mentioned luminescence bands are excited also by host lattice excitons, exciton energy being transferred to defects, exciting them and causing luminescence. The fulfilled spectral measurements allow determining luminescence mechanism for 320 nm and 400 nm bands in hBN and BNNTs. The main contribution to 320 nm luminescence is made by intracenter processes, when light absorption and emission occurs in one and the same impurity atom. The main contribution to 400 nm luminescence is made by recombination processes. Dependence of 400 nm luminescence intensity on oxygen concentration in ambient atmosphere observed for hBN and BNNTs allows proposing of this material for application as oxygen sensor.
LUMINESCENCE PROCESSES IN DIFFERENT STRUCTURED BORON NITRIDE MATERIALS Abstract This work is devoted to studies of spectral properties of hexagonal boron nitride macro material– polycrystalline grain powder (hBN) and nano material – multiwall nanotubes (BNNTs). In the work it was found that in all studied materials photoluminescence spectra contain the same bands, the most intensive bands are located at 320 nm and 400 nm. It allows concluding that identical natural defects are generated in BN crystal lattice during synthesis process. They are characteristic both to macro and nano material and they are not affected by the size scale. It was found that 320 n and 400 nm bands and their excitation bands have fine structure. The fulfilled IR absorption studies have shown that the fine structure is caused by optical phonons (LO and TO). It was observed that the mentioned luminescence bands are excited also by host lattice excitons, exciton energy being transferred to defects, exciting them and causing luminescence. The fulfilled spectral measurements allow determining luminescence mechanism for 320 nm and 400 nm bands in hBN and BNNTs. The main contribution to 320 nm luminescence is made by intracenter processes, when light absorption and emission occurs in one and the same impurity atom. The main contribution to 400 nm luminescence is made by recombination processes. Dependence of 400 nm luminescence intensity on oxygen concentration in ambient atmosphere observed for hBN and BNNTs allows proposing of this material for application as oxygen sensor.