Kvantu algoritmi grafa koka platumam
Loading...
Date
Authors
Advisor
Journal Title
Journal ISSN
Volume Title
Publisher
Latvijas Universitāte
Language
lav
Abstract
Grafu teorijā koka platums ir ar neorientētu grafu asociēts skaitlis. Vairākas NP-pilnas problēmas grafiem var būt atrisinātas polinomiālajā laikā pie nosacījuma, ka grafa koka platums ir ierobežots. Koka platuma rēķināšana ir pats par sevi NP-pilns uzdevums, un labākajam zināmajam klasiskajam algoritmam, kas to risina, ir sarežģītība $O^*(1.7347^n)$. Šajā darbā ir iegūts kvantu algoritms koka platumam ar sarežģītību $O^*(1.6683^n)$.
In graph theory, the treewidth is a number associated with an undirected graph. Many NP-hard problems on graphs with bounded treewidth can be solved in polynomial time. Determining treewidth is also an NP-hard problem, and the best known classical algorithm for treewidth has complexity $O^*(1.7347^n)$. In this work a quantum algorithm for treewidth with complexity $O^*(1.6683^n)$ is given.
In graph theory, the treewidth is a number associated with an undirected graph. Many NP-hard problems on graphs with bounded treewidth can be solved in polynomial time. Determining treewidth is also an NP-hard problem, and the best known classical algorithm for treewidth has complexity $O^*(1.7347^n)$. In this work a quantum algorithm for treewidth with complexity $O^*(1.6683^n)$ is given.