• English
    • Latviešu
    • Deutsch
    • русский
  • Help
  • English 
    • English
    • Latviešu
    • Deutsch
    • русский
  • Login
View Item 
  •   DSpace Home
  • B4 – LU fakultātes / Faculties of the UL
  • A -- Eksakto zinātņu un tehnoloģiju fakultāte / Faculty of Science and Technology
  • Bakalaura un maģistra darbi (EZTF) / Bachelor's and Master's theses
  • View Item
  •   DSpace Home
  • B4 – LU fakultātes / Faculties of the UL
  • A -- Eksakto zinātņu un tehnoloģiju fakultāte / Faculty of Science and Technology
  • Bakalaura un maģistra darbi (EZTF) / Bachelor's and Master's theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Jaunas sakarības starp Būla funkciju jutīgumu un bloku jutīgumu

Thumbnail
View/Open
302-48104-Vihrovs_Jevgenijs_jv09187.pdf (193.4Kb)
Author
Vihrovs, Jevgēnijs
Co-author
Latvijas Universitāte. Datorikas fakultāte
Advisor
Ambainis, Andris
Date
2015
Metadata
Show full item record
Abstract
Darbā tiek pētīta neatrisināta problēma skaitļošanas sarežģītības teorijā – Būla funkciju jutīguma s(f) saistība ar tādiem sarežģītības mēriem kā bloku jutīgums bs(f) un sertifikātu sarežģītība C(f). Populāra hipotēze apgalvo, ka jutīgums ir polinomiāli saistīts ar bloku jutīgumu un bs(f) = O(s(f)^c) kādai konstantei c. Līdz šim labākais zināmais novērtējums no augšas abiem mēriem ir eksponenciāls, bs(f) ≤ C(f) ≤ 2^(s(f)-1) s(f) - s(f) + 1, bet labākie atrastie piemēri sasniedz tikai kvadrātisku atstarpi, bs(f) = Ω(s(f)^2). Šajā darbā tiek pierādīts jauns novērtējums no augšas, bs(f) ≤ C(f) ≤ max(2^(s(f)-1) (s(f) - 1/3), s(f)).
 
We examine a longstanding problem in computational complexity theory – the relation between the sensitivity of Boolean functions and such complexity measures as block sensitivity bs(f) and certificate complexity C(f). The famous sensitivity conjecture claims that sensitivity is polynomially related to block sensitivity and bs(f) = O(s(f)^c) for some constant c. The best known yet upper bound is exponential, bs(f) ≤ C(f) ≤ 2^(s(f) - 1) s(f) - s(f) + 1, though the largest separation achieved between the two is quadratic, bs(f) = Ω(s(f)^2). In this work a new upper bound is proved, bs(f) ≤ C(f) ≤ max(2^(s(f)-1) (s(f) - 1/3), s(f)).
 
URI
https://dspace.lu.lv/dspace/handle/7/30276
Collections
  • Bakalaura un maģistra darbi (EZTF) / Bachelor's and Master's theses [5688]

University of Latvia
Contact Us | Send Feedback
Theme by 
@mire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

View Usage Statistics

University of Latvia
Contact Us | Send Feedback
Theme by 
@mire NV