Zur Kurzanzeige

dc.contributor.authorKotomin, Eugene A.
dc.contributor.authorMastrikov, Yuri A.
dc.contributor.authorMerkle, Rotraut
dc.contributor.authorMaier, Joachim
dc.date.accessioned2020-07-16T05:01:47Z
dc.date.available2020-07-16T05:01:47Z
dc.date.issued2020
dc.identifier.issn2451-9103
dc.identifier.urihttps://dspace.lu.lv/dspace/handle/7/52374
dc.descriptionThis study was partly supported by M-ERA-NET project SunToChem (EK, YM). The computer resources were provided by Stuttgart Super-computing Center (Project DEFTD 12939). Authors thank E. Heifets, M. M. Kuklja, M. Arrigoni, D. Morgan, R. Evarestov, and D. Gryaznov for fruitful discussions.en_US
dc.description.abstractThe efficiency of solid oxide fuel cells (SOFC) depends critically on materials, in particular for the cathode where the oxygen reduction reaction (ORR) occurs. Typically, mixed conducting perovskite ABO3-type materials are used for this purpose. The dominating surface terminations are (001) AO and BO2, with the relative fractions depending on materials composition and ambient conditions. Here, results of recent large-scale first principles (ab initio) calculations for the two alternative polar (La,Sr)O and MnO2 (001) terminations of (La,Sr)MnO3 cathode materials are discussed. The surface oxygen vacancy concentration for the (La,Sr)O termination is more than 5 orders of magnitude smaller compared to MnO2, which leads to drastically decreased estimated ORR rates. Thus, it is predicted for prototypical SOFC cathode materials that the BO2 termination largely determines the ORR kinetics, although with Sr surface segregation (long-term degradation) its fraction of the total surface area decreases, which slows down cathode kinetics.en_US
dc.description.sponsorshipInstitute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART²en_US
dc.description.urihttps://www.sciencedirect.com/science/article/pii/S2451910319301693
dc.language.isoengen_US
dc.publisherElsevier B.V.en_US
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/739508/EU/Centre of Advanced Material Research and Technology Transfer/CAMART²en_US
dc.relation.ispartofseriesCurrent Opinion in Electrochemistry;19
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCathode materialsen_US
dc.subjectFirst principles calculationsen_US
dc.subjectFuel cellsen_US
dc.subjectOxygen reduction Reaction (ORR)en_US
dc.subjectPerovskitesen_US
dc.subjectPolar surfacesen_US
dc.subjectRate determining stepen_US
dc.subjectResearch Subject Categories::NATURAL SCIENCES:Physicsen_US
dc.titleFirst principles calculations of oxygen reduction reaction at fuel cell cathodesen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.identifier.doi10.1016/j.coelec.2019.11.005


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige