• English
    • Latviešu
    • Deutsch
    • русский
  • Help
  • English 
    • English
    • Latviešu
    • Deutsch
    • русский
  • Login
View Item 
  •   DSpace Home
  • B6 – LU institūti un aģentūras / Institutes and agencies of the UL
  • Cietvielu fizikas institūts / Institute of Solid State Physics
  • Zinātniskie raksti (CFI) / Scientific articles
  • View Item
  •   DSpace Home
  • B6 – LU institūti un aģentūras / Institutes and agencies of the UL
  • Cietvielu fizikas institūts / Institute of Solid State Physics
  • Zinātniskie raksti (CFI) / Scientific articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Tuning the Photoresponse of Nano-Heterojunction: Pressure-Induced Inverse Photoconductance in Functionalized WO3 Nanocuboids

Thumbnail
View/Open
advs.201901132.pdf (1.745Mb)
Author
Rahman, Saqib
Samanta, Sudeshna
Kuzmin, Alexei
Errandonea, Daniel
Saqib, Hajra
Brewe, Dale L.
Kim, Jaeyong
Lu, Junling
Wang, Lin
Date
2019
Metadata
Show full item record
Abstract
Inverse photoconductivity (IPC) is a unique photoresponse behavior that exists in few photoconductors in which electrical conductivity decreases with irradiation, and has great potential applications in the development of photonic devices and nonvolatile memories with low power consumption. However, it is still challenging to design and achieve IPC in most materials of interest. In this study, pressure-driven photoconductivity is investigated in n-type WO3 nanocuboids functionalized with p-type CuO nanoparticles under visible illumination and an interesting pressure-induced IPC accompanying a structural phase transition is found. Native and structural distortion induced oxygen vacancies assist the charge carrier trapping and favor the persistent positive photoconductivity beyond 6.4 GPa. The change in photoconductivity is mainly related to a phase transition and the associated changes in the bandgap, the trapping of charge carriers, the WO6 octahedral distortion, and the electron–hole pair recombination process. A unique reversible transition from positive to inverse photoconductivity is observed during compression and decompression. The origin of the IPC is intimately connected to the depletion of the conduction channels by electron trapping and the chromic property of WO3. This synergistic rationale may afford a simple and powerful method to improve the optomechanical performance of any hybrid material.
URI
https://dspace.lu.lv/dspace/handle/7/52423
DOI
10.1002/advs.201901132
Collections
  • Zinātniskie raksti (CFI) / Scientific articles [604]

University of Latvia
Contact Us | Send Feedback
Theme by 
@mire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

View Usage Statistics

University of Latvia
Contact Us | Send Feedback
Theme by 
@mire NV