• English
    • Latviešu
    • Deutsch
    • русский
  • Help
  • English 
    • English
    • Latviešu
    • Deutsch
    • русский
  • Login
View Item 
  •   DSpace Home
  • B6 – LU institūti un aģentūras / Institutes and agencies of the UL
  • Cietvielu fizikas institūts / Institute of Solid State Physics
  • Zinātniskie raksti (CFI) / Scientific articles
  • View Item
  •   DSpace Home
  • B6 – LU institūti un aģentūras / Institutes and agencies of the UL
  • Cietvielu fizikas institūts / Institute of Solid State Physics
  • Zinātniskie raksti (CFI) / Scientific articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Effect of in Doping on the ZnO Powders Morphology and Microstructure Evolution of ZnO:In Ceramics as a Material for Scintillators

Thumbnail
View/Open
Effect-of-in-Doping-on-the-ZnO.pdf (1004.Kb)
Author
Muktupavela, Faina
Maniks, Janis
Grigorjeva, Larisa
Zabels, R.
Rodnyi, P.
Gorokhova, E.
Date
2018
Metadata
Show full item record
Abstract
Transparent ZnO ceramics are of interest for use as material for high-efficiency fast scintillators. Doping ZnO ceramics in order to improve complex of their properties is a promising direction. In the present research, the role of indium in the ZnO nanopowders surface interactions and in the change of microstructures and photoluminescence (PL) characteristics of sintered cera-mics is considered. Undoped and 0.13 wt% In doped ZnO ceramics are obtained by hot pressing sintering. It has been found that indium leads to the transition of initially faceted ZnO particles to rounded, contributing to good sintering with formation of diffusion active grain boundaries (GBs). Unlike ZnO ceramics, ZnO:In ceramics microstructure is characterised by the trans-crystalline mode of fracture, faceted GBs with places of zig-zag forms and predominant distribution of In at the GBs. Such indium induced modifications of GBs promote removal of point defects and reduce PL parameter α = I def /I exc in comparison with the undoped ceramics. Results characterise ZnO:In cera-mics with improved GBs properties as a prospective material for scintillators.
URI
https://dspace.lu.lv/dspace/handle/7/52427
DOI
10.2478/lpts-2018-0042
Collections
  • Zinātniskie raksti (CFI) / Scientific articles [604]

University of Latvia
Contact Us | Send Feedback
Theme by 
@mire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

View Usage Statistics

University of Latvia
Contact Us | Send Feedback
Theme by 
@mire NV