• English
    • Latviešu
    • Deutsch
    • русский
  • Help
  • English 
    • English
    • Latviešu
    • Deutsch
    • русский
  • Login
View Item 
  •   DSpace Home
  • B6 – LU institūti un aģentūras / Institutes and agencies of the UL
  • Cietvielu fizikas institūts / Institute of Solid State Physics
  • Zinātniskie raksti (CFI) / Scientific articles
  • View Item
  •   DSpace Home
  • B6 – LU institūti un aģentūras / Institutes and agencies of the UL
  • Cietvielu fizikas institūts / Institute of Solid State Physics
  • Zinātniskie raksti (CFI) / Scientific articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Neural Network Approach for Characterizing Structural Transformations by X-Ray Absorption Fine Structure Spectroscopy

Thumbnail
View/Open
Neural_Network_Approach_for_Characterizing_Structural_Transformations.pdf (1.686Mb)
Author
Timoshenko, Janis
Anspoks, Andris
Cintins, Arturs
Kuzmin, Alexei
Purans, Juris
Frenkel, Anatoly I.
Date
2018
Metadata
Show full item record
Abstract
The knowledge of the coordination environment around various atomic species in many functional materials provides a key for explaining their properties and working mechanisms. Many structural motifs and their transformations are difficult to detect and quantify in the process of work (operando conditions), due to their local nature, small changes, low dimensionality of the material, and/or extreme conditions. Here we use an artificial neural network approach to extract the information on the local structure and its in situ changes directly from the x-ray absorption fine structure spectra. We illustrate this capability by extracting the radial distribution function (RDF) of atoms in ferritic and austenitic phases of bulk iron across the temperature-induced transition. Integration of RDFs allows us to quantify the changes in the iron coordination and material density, and to observe the transition from a body-centered to a face-centered cubic arrangement of iron atoms. This method is attractive for a broad range of materials and experimental conditions.
URI
https://dspace.lu.lv/dspace/handle/7/52456
DOI
10.1103/PhysRevLett.120.225502
Collections
  • Zinātniskie raksti (CFI) / Scientific articles [604]

University of Latvia
Contact Us | Send Feedback
Theme by 
@mire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

View Usage Statistics

University of Latvia
Contact Us | Send Feedback
Theme by 
@mire NV