First-principles calculations of iodine-related point defects in CsPbI3

Loading...
Thumbnail Image

Date

Co-author

Advisor

Journal Title

Journal ISSN

Volume Title

Publisher

Royal Society of Chemistry

Language

eng

Abstract

We present here first principles hybrid functional calculations of the atomic and electronic structure of several iodine-related point defects in CsPbI3, a material relevant for photovoltaic applications. We show that the presence of neutral interstitial I atoms or electron holes leads to the formation of di-halide dumbbells of I2− (analogous to the well-known situation in alkali halides). Their formation and one-electron energies in the band gap are determined. The formation energy of the Frenkel defect pair (I vacancies and neutral interstitial I atoms) is found to be ∼1 eV, and as such is smaller than the band gap. We conclude that both iodine dumbbells and iodine vacancies could be, in principle, easily produced by interband optical excitation.

Citation

Relation

info:eu-repo/grantAgreement/EC/H2020/739508/EU/Centre of Advanced Material Research and Technology Transfer/CAMART²

Endorsement

Review

Supplemented By

Referenced By