• English
    • Latviešu
    • Deutsch
    • русский
  • Help
  • English 
    • English
    • Latviešu
    • Deutsch
    • русский
  • Login
View Item 
  •   DSpace Home
  • B6 – LU institūti un aģentūras / Institutes and agencies of the UL
  • Cietvielu fizikas institūts / Institute of Solid State Physics
  • Zinātniskie raksti (CFI) / Scientific articles
  • View Item
  •   DSpace Home
  • B6 – LU institūti un aģentūras / Institutes and agencies of the UL
  • Cietvielu fizikas institūts / Institute of Solid State Physics
  • Zinātniskie raksti (CFI) / Scientific articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Cladding-Pumped Erbium/Ytterbium Co-Doped Fiber Amplifier for C-Band Operation in Optical Networks

Thumbnail
View/Open
Cladding_Pumped_ErbiumYtterbium_Supe_etal_2021_AppliedSciences.pdf (3.450Mb)
Author
Supe, Andis
Olonkins, Sergejs
Udalcovs, Aleksejs
Senkans, Ugis
Murnieks, Rihards
Gegere, Lilita
Prigunovs, Dmitrijs
Grube, Jurgis
Elsts, Edgars
Spolitis, Sandis
Ozolins, Oskars
Bobrovs, Vjaceslavs
Date
2021
Metadata
Show full item record
Abstract
Space-division multiplexing (SDM) attracts attention to cladding-pumped optical amplifiers, but they suffer from a low pump power conversion efficiency. To address this issue, ytterbium (Yb3+) and erbium (Er3+) co-doping is considered as an effective approach. However, it changes the gain profile of Er3+-doped fiber amplifiers and induces the gain difference between optical wavelengths in the C-band, significantly limiting the effective band of the dense wavelength-division multiplexed (DWDM) system. This paper is devoted to a detailed study of a cladding-pumped Er3+/Yb3+ co-doped fiber amplifier (EYDFA) through numerical simulations aiming to identify a configuration, before assembling a similar EYDFA in our laboratory premises that ensures the desired performance. The simulation model is based on a commercial double cladding EYDF whose parameters are experimentally extracted and fed to the EYDFA setup for the system-level studies. We investigate the wavelength dependence of the amplifier’s characteristics (absolute gain, gain uniformity, noise figure) and bit error rate (BER) performance for several DWDM channels and their optical power. The obtained results show that a 7 m long EYDF and co-propagating pump direction is preferable for the EYDFA with a 3 W pump source at 975 nm and with the given gain medium characteristics for WDM applications. For instance, it ensures a gain of 19.7–28.3 dB and a noise figure of 3.7–4.2 dB when amplifying 40 DWDM channels with the input power of −20 dBm per channel. Besides, we study EYDFA gain bandwidth and the maximum output power when operating close to the saturation regime and perform a sensitivity analysis showing how the doped fiber’s absorption and emission cross-sections impact the amplification process through energy transfer from Yb3+ to Er3+. Finally, we quantify the power penalty introduced by the EYDFA; the results show that it is not higher than 0.1 dB when amplifying 40 × 10 Gbps non-return-to-zero on-off keying signals from −20 dBm/channel.---//---This work is licensed under a CC BY 4.0 license.
URI
https://www.mdpi.com/2076-3417/11/4/1702
https://dspace.lu.lv/dspace/handle/7/56488
DOI
10.3390/app11041702
Collections
  • Zinātniskie raksti (CFI) / Scientific articles [604]

University of Latvia
Contact Us | Send Feedback
Theme by 
@mire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

View Usage Statistics

University of Latvia
Contact Us | Send Feedback
Theme by 
@mire NV