• English
    • Latviešu
    • Deutsch
    • русский
  • Help
  • English 
    • English
    • Latviešu
    • Deutsch
    • русский
  • Login
View Item 
  •   DSpace Home
  • B6 – LU institūti un aģentūras / Institutes and agencies of the UL
  • Cietvielu fizikas institūts / Institute of Solid State Physics
  • Zinātniskie raksti (CFI) / Scientific articles
  • View Item
  •   DSpace Home
  • B6 – LU institūti un aģentūras / Institutes and agencies of the UL
  • Cietvielu fizikas institūts / Institute of Solid State Physics
  • Zinātniskie raksti (CFI) / Scientific articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Perovskite CH3NH3PbI3–XClx Solar Cells. Experimental Study of Initial Degradation Kinetics and Fill Factor Spectral Dependence

Thumbnail
View/Open
Article (2.388Mb)
Author
Kaulachs, I.
Ivanova, A.
Holsts, A.
Roze, M.
Flerov, A.
Tokmakov, Andrei
Mihailovs, Igors
Rutkis, Martins
Date
2021
Metadata
Show full item record
Abstract
The main drawback of the methylammonium lead halide perovskite solar cells is their degradation in ambient atmosphere. To investigate ambient-air-induced cell degradation, spec-tral dependencies of open-circuit voltage (VOC), fill factor (FF) and the power conversion effi-ciency (PCE) have been acquired (for the first time reported in literature). Our custom-made measurement system allowed us to perform measurements of the above-mentioned entities in situ directly in vacuum during and after thermal deposition of the elec-trode. We also studied how these parameters in vacuum changed after cell exposure to ambient air for 85 min (50 nm top electrode) and for 180 min (100 nm top Ag electrode). For fresh CH3NH3PbI3–xClx cell (never been in open air) with very high shunt resistance of 3·107 Ω·cm2 (with practically no shorts and therefore FF could be determined mainly by charge carrier recombination processes) we found that FF in vacuum increased along with an increase of the incident photon energy from 0.55 at 760 nm up to 0.82 at 400 nm. Hypothesis considering hot polaron participation in charge carrier photogeneration and recombination processes as well as another competing hypothesis were offered as possible explanations for the observed FF increase. The kinetics of short-circuit photocurrent EQE with a change in pressure was also inves-tigated. It was also shown that perovskite solar cell degradation could be noticeably reduced by increasing the top Ag electrode thickness to at least 100 nm, which could possibly facilitate the usual encapsulation process.---//---This work is licensed under a CC BY 4.0 license.
URI
https://www.sciendo.com/article/10.2478/lpts-2021-0006
https://dspace.lu.lv/dspace/handle/7/56495
DOI
10.2478/lpts-2021-0006
Collections
  • Zinātniskie raksti (CFI) / Scientific articles [604]

University of Latvia
Contact Us | Send Feedback
Theme by 
@mire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

View Usage Statistics

University of Latvia
Contact Us | Send Feedback
Theme by 
@mire NV