• English
    • Latviešu
    • Deutsch
    • русский
  • Help
  • English 
    • English
    • Latviešu
    • Deutsch
    • русский
  • Login
View Item 
  •   DSpace Home
  • B6 – LU institūti un aģentūras / Institutes and agencies of the UL
  • Cietvielu fizikas institūts / Institute of Solid State Physics
  • Zinātniskie raksti (CFI) / Scientific articles
  • View Item
  •   DSpace Home
  • B6 – LU institūti un aģentūras / Institutes and agencies of the UL
  • Cietvielu fizikas institūts / Institute of Solid State Physics
  • Zinātniskie raksti (CFI) / Scientific articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Band Gap Engineering and Trap Depths of Intrinsic Point Defects in RAlO3 (R = Y, La, Gd, Yb, Lu) Perovskites

Thumbnail
View/Open
Article (2.533Mb)
Author
Zhydachevskyy, Yaroslav
Hizhnyi, Yuriy
Nedilko, Sergii G.
Kudryavtseva, Irina
Pankratov, Vladimir
Stasiv, Vasyl
Vasylechko, Leonid
Sugak, Dmytro
Lushchik, Aleksandr
Berkowski, Marek
Suchocki, Andrzej
Klyui, Nickolai
Date
2021
Metadata
Show full item record
Abstract
The possibility of band gap engineering (BGE) in RAlO3(R = Y, La, Gd, Yb, Lu) perovskites in the context of trap depths of intrinsic point defects was investigated comprehensively using experimental and theoretical approaches. The optical band gap of the materials,Eg, was determined via both the absorption measurements in the VUV spectral range and the spectra of recombination luminescence excitation by synchrotron radiation. The experimentally observed effect ofEgreduction from ∼8.5 to ∼5.5 eV in RAlO3perovskites with increasing R3+ionic radius was confirmed by the DFT electronic structure calculations performed for RMIIIO3crystals (R = Lu, Y, La; MIII= Al, Ga, In). The possibility of BGE was also proved by the analysis of thermally stimulated luminescence (TSL) measured above room temperature for the far-red emitting (Y/Gd/La)AlO3:Mn4+phosphors, which confirmed decreasing of the trap depths in the cation sequence Y → Gd → La. Calculations of the trap depths performed within the super cell approach for a number of intrinsic point defects and their complexes allowed recognizing specific trapping centers that can be responsible for the observed TSL. In particular, the electron traps of 1.33 and 1.43 eV (in YAlO3) were considered to be formed by the energy level of oxygen vacancy (VO) with different arrangement of neighboring YAland VY, while shallower electron traps of 0.9-1.0 eV were related to the energy level of YAlantisite complexes with neighboring VOor (VO+ VY). The effect of the lowering of electron trap depths in RAlO3was demonstrated for the VO-related level of the (YAl+ VO+ VY) complex defect for the particular case of La substituting Y. © 2021 The Authors. Published by American Chemical Society
URI
https://pubs.acs.org/doi/10.1021/acs.jpcc.1c06573
https://dspace.lu.lv/dspace/handle/7/56914
DOI
10.1021/acs.jpcc.1c06573
Collections
  • Zinātniskie raksti (CFI) / Scientific articles [604]

University of Latvia
Contact Us | Send Feedback
Theme by 
@mire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

View Usage Statistics

University of Latvia
Contact Us | Send Feedback
Theme by 
@mire NV