• English
    • Latviešu
    • Deutsch
    • русский
  • Help
  • English 
    • English
    • Latviešu
    • Deutsch
    • русский
  • Login
View Item 
  •   DSpace Home
  • B6 – LU institūti un aģentūras / Institutes and agencies of the UL
  • Cietvielu fizikas institūts / Institute of Solid State Physics
  • Zinātniskie raksti (CFI) / Scientific articles
  • View Item
  •   DSpace Home
  • B6 – LU institūti un aģentūras / Institutes and agencies of the UL
  • Cietvielu fizikas institūts / Institute of Solid State Physics
  • Zinātniskie raksti (CFI) / Scientific articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Positron annihilation lifetime spectroscopy insight on free volume conversion of nanostructured MgAl2 O4 ceramics

Thumbnail
View/Open
Article (4.100Mb)
Author
Klym, Halyna
Karbovnyk, Ivan
Piskunov, Sergei
Popov, Anatoli I.
Date
2021
Metadata
Show full item record
Abstract
Herein we demonstrate the specifics of using the positron annihilation lifetime spectroscopy (PALS) method for the study of free volume changes in functional ceramic materials. Choosing technological modification of nanostructured MgAl2 O4 spinel as an example, we show that for ceramics with well-developed porosity positron annihilation is revealed through two channels: positron trapping channel and ortho-positronium decay. Positron trapping in free-volume defects is described by the second component of spectra and ortho-positronium decay process by single or multiple components, depending on how well porosity is developed and on the experimental configuration. When using proposed positron annihilation lifetime spectroscopy approaches, three components are the most suitable fit in the case of MgAl2 O4 ceramics. In the analysis of the second component, it is shown that technological modification (increasing sintering temperature) leads to volume shrinking and decreases the number of defect-related voids. This process is also accompanied by the decrease of the size of nanopores (described by the third component), while the overall number of nanopores is not affected. The approach to the analysis of positron annihilation lifetime spectra presented here can be applied to a wide range of functional nanomaterials with pronounced porosity. © 2021 by the authors. Licensee MDPI, Basel, Switzerland. Published under the CC BY 4.0 license.
URI
https://www.mdpi.com/2079-4991/11/12/3373
https://dspace.lu.lv/dspace/handle/7/56919
DOI
10.3390/nano11123373
Collections
  • Zinātniskie raksti (CFI) / Scientific articles [604]

University of Latvia
Contact Us | Send Feedback
Theme by 
@mire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

View Usage Statistics

University of Latvia
Contact Us | Send Feedback
Theme by 
@mire NV