• English
    • Latviešu
    • Deutsch
    • русский
  • Help
  • English 
    • English
    • Latviešu
    • Deutsch
    • русский
  • Login
View Item 
  •   DSpace Home
  • B6 – LU institūti un aģentūras / Institutes and agencies of the UL
  • Cietvielu fizikas institūts / Institute of Solid State Physics
  • Zinātniskie raksti (CFI) / Scientific articles
  • View Item
  •   DSpace Home
  • B6 – LU institūti un aģentūras / Institutes and agencies of the UL
  • Cietvielu fizikas institūts / Institute of Solid State Physics
  • Zinātniskie raksti (CFI) / Scientific articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

First principles modeling of 3d-metal doped three-layer fluorite-structured TiO2 (4,4) nanotube to be used for photocatalytic hydrogen production

Thumbnail
View/Open
First_principles_modeling_of_3dmetal_doped_Bocharov_etal_Vacuum_2017.pdf (1.562Mb)
Author
Bocharov, Dmitrijs
Piskunov, Sergei
Zhukovskii, Yuri F.
Spohr, Eckhard
D'yachkov, Pavel N.
Date
2017
Metadata
Show full item record
Abstract
We have estimated theoretically the photocatalytic suitability of thinnest single-wall fluorite-structured titania (4,4) nanotube (NT) possessing three layers each (O-Ti-O) and doped by Sc, V, Cr, Mn, Fe, Co, Ni, Cu and Zn atoms substituted for host Ti atoms. For this goal, we have performed large-scale ab initio calculations on TiO2 NTs with three-layer morphology doped by 3d transition metals, using (i) the method of linear combination of atom-centered Gaussian-type orbitals (LCAO) based on the hybrid density functional theory (DFT) incorporating the Hartree-Fock (HF) exchange contribution (DFT+HF) and (ii) the method of linearized augmented cylindrical waves (LACW) with the muffin-tin approximation based on the local density functional approach (LDA). We have compared the ground state electronic structure, particularly the one-electron densities of states (DOSs) from the LCAO and LACW calculations for periodic arrangements of the 3d-metal dopant atoms. The results show clear evidence for a potential photocatalytic application for water splitting in the case of the Sc-doped titania nanotubes only. These NTs show both a reduced band gap of 2.0 eV relative to the pristine NT and an absence of defect-induced levels between the redox potentials of hydrogen and oxygen, so that electron-hole recombination becomes unlikely. Other 3d dopants with higher atomic number, although their band gap also covers the favorable green to orange region of the solar spectrum, are unsuitable because their defect-induced levels are positioned between the redox potential of oxygen and hydrogen, which can be expected to lead to rapid electron-hole recombination.--//--Dmitry Bocharov, Sergei Piskunov, Yuri F. Zhukovskii, Eckhard Spohr, Pavel N. D'yachkov, First principles modeling of 3d-metal doped three-layer fluorite-structured TiO2 (4,4) nanotube to be used for photocatalytic hydrogen production, Vacuum, Volume 146, 2017, Pages 562-569, ISSN 0042-207X, https://doi.org/10.1016/j.vacuum.2017.05.002.
URI
https://www.sciencedirect.com/science/article/pii/S0042207X1730012X
https://dspace.lu.lv/dspace/handle/7/61144
DOI
1016/j.vacuum.2017.05.002
Collections
  • Zinātniskie raksti (CFI) / Scientific articles [604]

University of Latvia
Contact Us | Send Feedback
Theme by 
@mire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

View Usage Statistics

University of Latvia
Contact Us | Send Feedback
Theme by 
@mire NV