• English
    • Latviešu
    • Deutsch
    • русский
  • Help
  • English 
    • English
    • Latviešu
    • Deutsch
    • русский
  • Login
View Item 
  •   DSpace Home
  • B6 – LU institūti un aģentūras / Institutes and agencies of the UL
  • Cietvielu fizikas institūts / Institute of Solid State Physics
  • Zinātniskie raksti (CFI) / Scientific articles
  • View Item
  •   DSpace Home
  • B6 – LU institūti un aģentūras / Institutes and agencies of the UL
  • Cietvielu fizikas institūts / Institute of Solid State Physics
  • Zinātniskie raksti (CFI) / Scientific articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Nanocrystalline CaWO4 and ZnWO4 Tungstates for Hybrid Organic–Inorganic X-ray Detectors

Thumbnail
View/Open
Article (3.133Mb)
Author
Pudža, Inga
Pudžs, Kaspars
Tokmakovs, Andrejs
Strautnieks, Normunds Ralfs
Kalinko, Aleksandr
Kuzmin, Alexei
Date
2023
Metadata
Show full item record
Abstract
Hybrid materials combining an organic matrix and high-Z nanomaterials show potential for applications in radiation detection, allowing unprecedented device architectures and functionality. Herein, novel hybrid organic–inorganic systems were produced using a mixture of tungstate (CaWO4 or ZnWO4) nanoparticles with a P3HT:PCBM blend. The nano-tungstates with a crystallite size of 43 nm for CaWO4 and 30 nm for ZnWO4 were synthesized by the hydrothermal method. Their structure and morphology were characterized by X-ray diffraction and scanning electron microscopy. The hybrid systems were used to fabricate direct conversion X-ray detectors able to operate with zero bias voltage. The detector performance was tested in a wide energy range using monochromatic synchrotron radiation. The addition of nanoparticles with high-Z elements improved the detector response to X-ray radiation compared with that of a pure organic P3HT:PCBM bulk heterojunction cell. The high dynamic range of our detector allows for recording X-ray absorption spectra, including the fine X-ray absorption structure located beyond the absorption edge. The obtained results suggest that nanocrystalline tungstates are promising candidates for application in direct organic–inorganic X-ray detectors.--//-- This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
URI
https://www.mdpi.com/1996-1944/16/2/667
https://dspace.lu.lv/dspace/handle/7/61736
DOI
10.3390/ma16020667
Collections
  • Zinātniskie raksti (CFI) / Scientific articles [604]

University of Latvia
Contact Us | Send Feedback
Theme by 
@mire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

View Usage Statistics

University of Latvia
Contact Us | Send Feedback
Theme by 
@mire NV