• English
    • Latviešu
    • Deutsch
    • русский
  • Help
  • English 
    • English
    • Latviešu
    • Deutsch
    • русский
  • Login
View Item 
  •   DSpace Home
  • B6 – LU institūti un aģentūras / Institutes and agencies of the UL
  • Cietvielu fizikas institūts / Institute of Solid State Physics
  • Zinātniskie raksti (CFI) / Scientific articles
  • View Item
  •   DSpace Home
  • B6 – LU institūti un aģentūras / Institutes and agencies of the UL
  • Cietvielu fizikas institūts / Institute of Solid State Physics
  • Zinātniskie raksti (CFI) / Scientific articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

First-Principles Linear Combination of Atomic Orbitals Calculations of K2SiF6 Crystal: Structural, Electronic, Elastic, Vibrational and Dielectric Properties

Thumbnail
View/Open
Article (1.179Mb)
Author
Rusevich, Leonid L.
Brik, Mikhail G.
Gryaznov, Denis
Srivastava, Alok M.
Chervyakov, Ilya
Zvejnieks, Guntars
Bocharov, Dmitry
Kotomin, Eugene A.
Date
2024
Metadata
Show full item record
Abstract
The results of first-principles calculations of the structural, electronic, elastic, vibrational, dielectric and optical properties, as well as the Raman and infrared (IR) spectra, of potassium hexafluorosilicate (K2SiF6; KSF) crystal are discussed. KSF doped with manganese atoms (KSF:Mn4+) is known for its ability to function as a phosphor in white LED applications due to the efficient red emission from Mn⁴⁺ activator ions. The simulations were performed using the CRYSTAL23 computer code within the linear combination of atomic orbitals (LCAO) approximation of the density functional theory (DFT). For the study of KSF, we have applied and compared several DFT functionals (with emphasis on hybrid functionals) in combination with Gaussian-type basis sets. In order to determine the optimal combination for computation, two types of basis sets and four different functionals (three advanced hybrid—B3LYP, B1WC, and PBE0—and one LDA functional) were used, and the obtained results were compared with available experimental data. For the selected basis set and functional, the above-mentioned properties of KSF were calculated. In particular, the B1WC functional provides us with a band gap of 9.73 eV. The dependencies of structural, electronic and elastic parameters, as well as the Debye temperature, on external pressure (0–20 GPa) were also evaluated and compared with previous calculations. A comprehensive analysis of vibrational properties was performed for the first time, and the influence of isotopic substitution on the vibrational frequencies was analyzed. IR and Raman spectra were simulated, and the calculated Raman spectrum is in excellent agreement with the experimental one. © 2024 by the authors. --//-- This is an open-access article Rusevich, L.L.; Brik, M.G.; Gryaznov, D.; Srivastava, A.M.; Chervyakov, I.; Zvejnieks, G.; Bocharov, D.; Kotomin, E.A. First-Principles Linear Combination of Atomic Orbitals Calculations of K2SiF6 Crystal: Structural, Electronic, Elastic, Vibrational and Dielectric Properties. Materials 2024, 17, 4865. https://doi.org/10.3390/ma17194865 published under the CC BY 4.0 licence.
URI
https://www.mdpi.com/1996-1944/17/19/4865
https://dspace.lu.lv/dspace/handle/7/67216
DOI
10.3390/ma17194865
Collections
  • Zinātniskie raksti (CFI) / Scientific articles [604]

University of Latvia
Contact Us | Send Feedback
Theme by 
@mire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

View Usage Statistics

University of Latvia
Contact Us | Send Feedback
Theme by 
@mire NV