• English
    • Latviešu
    • Deutsch
    • русский
  • Help
  • English 
    • English
    • Latviešu
    • Deutsch
    • русский
  • Login
View Item 
  •   DSpace Home
  • B6 – LU institūti un aģentūras / Institutes and agencies of the UL
  • Cietvielu fizikas institūts / Institute of Solid State Physics
  • Zinātniskie raksti (CFI) / Scientific articles
  • View Item
  •   DSpace Home
  • B6 – LU institūti un aģentūras / Institutes and agencies of the UL
  • Cietvielu fizikas institūts / Institute of Solid State Physics
  • Zinātniskie raksti (CFI) / Scientific articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Influence of organic material and sample parameters on the surface potential in Kelvin probe measurements

Thumbnail
View/Open
8_Kelvin_surface_potential_2019.pdf (475.8Kb)
Author
Grzibovskis, Raitis
Vembris, Aivars
Date
2019
Metadata
Show full item record
Abstract
Scanning Kelvin probe is a method for material surface studies. It is used to determine the work function of metals. In the case of organic semiconductors, the measured surface potential is considered to be the Fermi level of the material which has been shown in some cases. But in most papers, the surface potential dependence on the metal electrode or film thickness was observed. Material properties and their influence on the measured surface potential and its relation to the Fermi level previously have not been systematically studied. In this work, the surface potential was measured for different materials—metal, organic dielectric material, and organic semiconductors. In most of the cases, the obtained surface potential was dependent on the metal electrode work function. This dependence decreased with the increase in electrical conductivity of the material. Several materials were chosen for studies where sample thickness was varied. Results showed that for most of the studied semiconductors the sample thickness of around 1.5–2 µm was required to obtain surface potential values which do not depend on the electrode work function.
URI
https://dspace.lu.lv/dspace/handle/7/52436
DOI
10.1007/s42452-019-0766-z
Collections
  • Zinātniskie raksti (CFI) / Scientific articles [604]

University of Latvia
Contact Us | Send Feedback
Theme by 
@mire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

View Usage Statistics

University of Latvia
Contact Us | Send Feedback
Theme by 
@mire NV