Mandelbrota kopas vizualizēšana
Loading...
Date
Authors
Advisor
Journal Title
Journal ISSN
Volume Title
Publisher
Latvijas Universitāte
Language
N/A
Abstract
Šaja darba rakstits par Mandelbrota kopas vizualizešanas variacijam,
izmantojot dažadas krasu pieškiršanas metodes. Klasiska metode iteraciju skaitam
piekarto krasu no iepriekš definetas krasu paletes. Darba tiek apskatitas kopas
attelošanas metodes modificejot vai nu krasas pieškiršanas algoritmu vai ari
Mandelbrota funkciju, kuras uzsver citas Mandelbrota kopas ipašibas.
Darba praktiska dala ietver programmas veidošanu un rakstišanu, ar kuras
palidzibu var eksperimentali parbaudit dažadas attelošanas metodes. Darba ir
aprakstitas gan eksperimentu rezultati, gan pašas programmas lietošanas iespejas.
Atslegvardi: Mandelbrots, fraktali, attels, datora programma
This paper describes various visualisation methods of the Mandelbrot set by using different colour assigning methods and algorithms. Classical method is to use only the number of iterations needed for the initial value to escape and assign a colour according to a pre-defined colour palette (gradient). This paper groups various colouring methods, which involve either changing the algorithm of assigning a colour or modifying the Mandelbrot function itself. These various methods tend to emphasize different characteristics of the Mandelbrot set. Practical part of this paper involves designing and writing the program, which enable the author to perform specific mathematical experiments described in the theoretical part. This paper describes results of the experiments as well as the use of the programmes functionality.
This paper describes various visualisation methods of the Mandelbrot set by using different colour assigning methods and algorithms. Classical method is to use only the number of iterations needed for the initial value to escape and assign a colour according to a pre-defined colour palette (gradient). This paper groups various colouring methods, which involve either changing the algorithm of assigning a colour or modifying the Mandelbrot function itself. These various methods tend to emphasize different characteristics of the Mandelbrot set. Practical part of this paper involves designing and writing the program, which enable the author to perform specific mathematical experiments described in the theoretical part. This paper describes results of the experiments as well as the use of the programmes functionality.