• English
    • Latviešu
    • Deutsch
    • русский
  • Help
  • Deutsch 
    • English
    • Latviešu
    • Deutsch
    • русский
  • Einloggen
Dokumentanzeige 
  •   DSpace Startseite
  • B4 – LU fakultātes / Faculties of the UL
  • B --- Bij. Fizikas, matemātikas un optometrijas fakultātes studentu noslēguma darbi / Faculty of Physics, Mathematics and Optometry - Graduate works
  • Bakalaura un maģistra darbi (FMOF) / Bachelor's and Master's theses
  • Dokumentanzeige
  •   DSpace Startseite
  • B4 – LU fakultātes / Faculties of the UL
  • B --- Bij. Fizikas, matemātikas un optometrijas fakultātes studentu noslēguma darbi / Faculty of Physics, Mathematics and Optometry - Graduate works
  • Bakalaura un maģistra darbi (FMOF) / Bachelor's and Master's theses
  • Dokumentanzeige
JavaScript is disabled for your browser. Some features of this site may not work without it.

Dziļo neironu tīkla lietojums portfeļa konstrukcijas optimizācijā

Thumbnail
Öffnen
304-72248-Avenitis_Elvijs_ea17055.pdf (673.5Kb)
Autor
Avenītis, Elvijs
Co-author
Latvijas Universitāte. Fizikas, matemātikas un optometrijas fakultāte
Advisor
Valeinis, Jānis
Datum
2019
Metadata
Zur Langanzeige
Zusammenfassung
Samazinoties skaitļošanas jaudas izmaksām un pieaugot pētniecībai, neironu tīklu popularitāte pēdējos gados strauji augusi, un to pielietojumam tiek atrastas jaunas vietas, kas iepriekš nav bijušaspraktiskipieejamas. DarbātiekizmantotarekurentuneironatīklustruktūraMarkovitza optimālā portfeļa kontekstā, lai optimizētu riska un kapitāla ienesīguma attiecību ieguldījumu portfeļos. Izmantojotpēdējodesmitgaduikmēnešadatustiekdemonstrēts,kadziļoneironutīklu struktūrasuzrādalabākusniegumukāvienmērīgisabalansētsieguldījumuportfelisunklasiskās finanšu literatūras metodes, sasniedzot augstāku absolūto ienesīgumu un Sharpe koeficientu trenēšanasuntestakopās.
 
Increasing accessibility of computing power and growing amount of applicable research in artificial intelligence has spurred significant interest in neural networks, widening the scope of their applicability to include fields previously considered inapproachable. This thesis uses a recurrent neural network structure within the Markowitz portfolio theory to optimize the risk/reward relationship for an investment portfolio. Results demonstrate that using the monthly data for the last ten years, deep neural networks are able to outperform an equally balanced market portfolio and classical financial literature methods, showing outperformance in both relative and absolute tears in both training and testing datasets.
 
URI
https://dspace.lu.lv/dspace/handle/7/47450
Collections
  • Bakalaura un maģistra darbi (FMOF) / Bachelor's and Master's theses [2775]

University of Latvia
Kontakt | Feedback abschicken
Theme by 
@mire NV
 

 

Stöbern

Gesamter BestandBereiche & SammlungenErscheinungsdatumAutorenTitelnSchlagwortenDiese SammlungErscheinungsdatumAutorenTitelnSchlagworten

Mein Benutzerkonto

Einloggen

Statistik

Benutzungsstatistik

University of Latvia
Kontakt | Feedback abschicken
Theme by 
@mire NV