• English
    • Latviešu
    • Deutsch
    • русский
  • Help
  • English 
    • English
    • Latviešu
    • Deutsch
    • русский
  • Login
View Item 
  •   DSpace Home
  • B4 – LU fakultātes / Faculties of the UL
  • B --- Bij. Fizikas, matemātikas un optometrijas fakultātes studentu noslēguma darbi / Faculty of Physics, Mathematics and Optometry - Graduate works
  • Bakalaura un maģistra darbi (FMOF) / Bachelor's and Master's theses
  • View Item
  •   DSpace Home
  • B4 – LU fakultātes / Faculties of the UL
  • B --- Bij. Fizikas, matemātikas un optometrijas fakultātes studentu noslēguma darbi / Faculty of Physics, Mathematics and Optometry - Graduate works
  • Bakalaura un maģistra darbi (FMOF) / Bachelor's and Master's theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Īpašvērtību problēmas plānu ķermeņu rezonanses frekvenču noteikšanā

Thumbnail
View/Open
304-32988-Aleksejs_Zaharevics_AZ08218.pdf (3.620Mb)
Author
Zaharevičs, Aleksejs
Co-author
Latvijas Universitāte. Fizikas un matemātikas fakultāte
Advisor
Strautiņš, Uldis
Date
2012
Metadata
Show full item record
Abstract
Šajā darbā tiek apskatīts uzdevums noteikt plānas, elastīgas struktūras svārstību īpašfrekvences, par piemēru ņemot pamatos iestiprinātas taisnstūra paralēlskaldņa formas čaulas gadījumu. Tiek apskatītas svārstības vienā plaknē un problēma tiek reducēta uz baļķu (siju) sistēmu. Tiek iegūti saliedēšanas nosacījumi un formulēta īpašvērtību problēma. Konstanta lieces stinguma gadījumā iegūtā problēma var tikt risināta analītiski, bet vispārīgajā gadījumā nepieciešamas skaitliskas metodes. Darbā tiek piedāvātas vairākas iespējas, kā diskrētajos vienādojumos iekļaut baļķu saliedēšanas nosacījumus. Visos gadījumos tiek ilustrēta īpašvērtību konverģence. Tiek iegūtas arī pirmās svārstību modas - problēmas īpašfunkcijas. Atslēgas vārdi: īpašvērtības, īpašfrekvences, rezonanse, Eilera-Bernulli baļķis, īpašfunkcijas, svārstību modas.
 
This thesis is concerning with the problem of estimating the eigenfrequencies of a thin elastic structure, namely, a clamped shell of cuboid shape. We consider deformations in a single place and reduce the problem to a system of beams. Interface conditions are obtained and am eigenvalue problem is formulated. Constant bending stiffness permits an analytic approach, however, more general cases require numerical methods. We propose several methods of discretizing the interface conditions. Numerical evidence of convergence of the first eigenvalues is presented and the first eigenfunctions are computed. Keywords: eigenvalues, eigenfrequencies, rosonance, Euler-Bernoulli beam, eigenfunctions, normal modes.
 
URI
https://dspace.lu.lv/dspace/handle/7/16242
Collections
  • Bakalaura un maģistra darbi (FMOF) / Bachelor's and Master's theses [2775]

University of Latvia
Contact Us | Send Feedback
Theme by 
@mire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

View Usage Statistics

University of Latvia
Contact Us | Send Feedback
Theme by 
@mire NV